adding SiO₂, in which case formation of SiO₂ skeleton is conclusive evidence of presence of fluosilicate. In ash contg appreciable amt of SiO₂, H₂SO₄ liberates SiF₄ rather than HF. Therefore presence of fluosilicate, not fluoride, is indicated.

Ref.: Mon. Sci. (4th Ser.) 9, Part 1, 324(1895).

C. Qualitative Test II

Ash filter contg insol. portion from 975.28A in Pt crucible, mix with little pptd SiO_2 , and add 1 mL H_2SO_4 . Cover crucible with watch glass from underside of which drop of H_2O is suspended, and heat 1 hr at $70-80^\circ$, keeping watch glass well cooled. The H_2O decomposes SiF_4 formed, leaving gelatinous deposit of SiO_2 and etching ring at periphery of drop of H_2O . Test filtrate for H_3BO_3 as in 970.33.

D. Quantitative Method

See 944.08.

931.08

Formaldehyde in Food First Action

(See also 964.21.)

A. Preparation of Sample

If sample is solid or semisolid, macerate 100 g with 100 mL H_2O in mortar. Transfer to 800 mL Kjeldahl flask, acidify with $H_3PO_4,\ add\ 1$ mL excess, connect with condenser thru trap, and slowly distil 50 mL. For milk, dil. 100 mL with 100 mL $H_2O,\ and\ acidify\ and\ distil\ as\ for\ solids.$ With other liq. foods, acidify 200 mL and distil as for\ solids.

B. Chromotropic Acid Test

- (a) Reagent.—Prep. satd soln of 1,8-dihydroxynaphthalene-3,6-disulfonic acid (ca 500 mg/100 mL) in ca 72% H₂SO₄ (pour 150 mL H₂SO₄ into 100 mL H₂O and cool). Soln is light straw-colored.
- (b) Test.—Place 5 mL reagent in test tube and add, with mixing, 1 mL distillate, 931.08A. Place in boiling H₂O bath 15 min, and observe during heating period. Presence of HCHO is indicated by appearance of light to deep purple (depth of color depending on amt of HCHO present).

Ref.: Z. Anal. Chem. 110, 22(1937).

C. Hehner-Fulton Test

(Caution: See safety notes on sulfuric acid and bromine.)

(a) Oxidizing soln.—To cold H₂SO₄ add, in small portions, equal vol. satd Br-H₂O, cooling thruout operation.

(b) Test.—To 6 mL cold H₂SO₄ add 5 mL distillate, 931.08A, slowly and with cooling. Place 5 mL mixt. in test tube, and add, slowly and with cooling, 1 mL aldehyde-free milk, then 0.5 mL oxidizing soln. Mix. Purplish-pink indicates HCHO.

Ref.: Ind. Eng. Chem. Anal. Ed. 3, 199(1931).

CAS-50-00-0 (formaldehyde)

970.35

Formic Acid in Food Final Action

See 938.09; 971.11.

957.08

Hydrogen Peroxide in Milk Qualitative Color Test Final Action

- (a) Reagent.—Dissolve 1 g V_2O_5 in 100 mL H_2SO_4 (6 + 94).
- (b) Test.—Add 10-20 drops reagent to ca 10 mL sample and mix. Pink or red indicates H₂O₂.

Ref.: JAOAC 40, 789(1957).

CAS-7722-84-1 (hydrogen peroxide)

942.09

Monochloroacetic Acid in Liquids and Preservatives Qualitative Tests Final Action

A. Optical-Crystallographic Properties of Barium Salt

(Applicable to com. preservatives)

Dil. 4-5 mL sample to 100 mL, add 6 mL H₂SO₄ (1 + 1), and ext with equal vol. ether in separator. If emulsions form, ext in continuous extractor 1 hr. Transfer ether ext to separator, add few drops phthln and 5 mL 0.1 N Ba(OH)₂, and shake 30 sec. If aq. layer takes on pink typical of phthln, filter thru paper into small beaker. Add ca 0.05 N HOAc until colorless and evap. to 1-2 mL on steam bath. Let remaining liq. evap. spontaneously in air and finally in desiccator. If 5 mL 0.1 N Ba(OH)₂ does not give pink aq. layer, add 5 mL more before sepg. Repeat extn with Ba(OH)₂ soln several times or until pink soln is obtained, evapg each Ba soln in sep. beaker. Examine crystals under polarizing microscope.

Barium monochloroacetate monohydrate crystallizes from H₂O in plates, many of which are hexagonal in habit and frequently form in overlapping layers. Even in material that has been finely powd for microscopic examination, pointed terminations of the plates, often in pairs, can be observed. In parallel polarized light (crossed nicols) extinction is parallel and sign of elongation is neg. on more elongated plates. Plates invariably extinguish sharply with crossed nicols and therefore interference figures are not observed in convergent polarized light (crossed nicols). Since plates persistently lie in one orientation, significant refractive indices are detd by statistical method, lowest and highest indices resp. being measured on plates showing max. double refraction. These 2 indices are therefore arbitrarily designated as $n\alpha$ (min. value) and $n\gamma$ (max. value). Two significant refractive indices are: $n\alpha = 1.582$ and ny = 1.611, both ± 0.002 , frequently shown on the platey fragments.

B. Indigo Test

(Caution: See safety notes on distillation, flammable solvents, and diethyl ether.)

- (a) Commercial preservatives.—Dil. 2 mL sample to 100 mL, add 3 mL H_2SO_4 , and shake with 100 mL ether. Add 3 mL anthranilic acid reagent (1 g + 0.3 g NaOH/50 mL) to ether ext, evap. at low temp., filter off any insol. matter, and proceed as in (c), beginning "Test with litmus paper."
- (b) Carbonated beverages, orange juice, and wine.—Acidify 100 mL sample with 3 mL H₂SO₄ and ext, using either continuous extractor or separator. Add 3 mL anthranilic acid reagent, (a), to ether ext and evap. at low temp. If any insol. matter seps, filter thru small wet paper. To clear liq. in 50 mL